Theorem muldiv3 | index | src |

theorem muldiv3 (a b: nat): $ b || a -> b * (a // b) = a $;
StepHypRefExpression
1 mulcom
b * (a // b) = a // b * b
2 divmul
b || a -> a // b * b = a
3 1, 2 syl5eq
b || a -> b * (a // b) = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)