theorem znegeqd (_G: wff) (_n1 _n2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> -uZ _n1 = -uZ _n2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | hyp _nh | _G -> _n1 = _n2 | 
        
          | 2 | 1 | zsndeqd | _G -> zsnd _n1 = zsnd _n2 | 
        
          | 3 | 1 | zfsteqd | _G -> zfst _n1 = zfst _n2 | 
        
          | 4 | 2, 3 | znsubeqd | _G -> zsnd _n1 -ZN zfst _n1 = zsnd _n2 -ZN zfst _n2 | 
        
          | 5 | 4 | conv zneg | _G -> -uZ _n1 = -uZ _n2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)