Theorem znsubeqd | index | src |

theorem znsubeqd (_G: wff) (_m1 _m2 _n1 _n2: nat):
  $ _G -> _m1 = _m2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> _m1 -ZN _n1 = _m2 -ZN _n2 $;
StepHypRefExpression
1 hyp _mh
_G -> _m1 = _m2
2 hyp _nh
_G -> _n1 = _n2
3 1, 2 lteqd
_G -> (_m1 < _n1 <-> _m2 < _n2)
4 1 suceqd
_G -> suc _m1 = suc _m2
5 2, 4 subeqd
_G -> _n1 - suc _m1 = _n2 - suc _m2
6 5 b1eqd
_G -> b1 (_n1 - suc _m1) = b1 (_n2 - suc _m2)
7 1, 2 subeqd
_G -> _m1 - _n1 = _m2 - _n2
8 7 b0eqd
_G -> b0 (_m1 - _n1) = b0 (_m2 - _n2)
9 3, 6, 8 ifeqd
_G -> if (_m1 < _n1) (b1 (_n1 - suc _m1)) (b0 (_m1 - _n1)) = if (_m2 < _n2) (b1 (_n2 - suc _m2)) (b0 (_m2 - _n2))
10 9 conv znsub
_G -> _m1 -ZN _n1 = _m2 -ZN _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq)