Theorem subeqd | index | src |

theorem subeqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> _a1 - _b1 = _a2 - _b2 $;
StepHypRefExpression
1 hyp _bh
_G -> _b1 = _b2
2 eqidd
_G -> x = x
3 1, 2 addeqd
_G -> _b1 + x = _b2 + x
4 hyp _ah
_G -> _a1 = _a2
5 3, 4 eqeqd
_G -> (_b1 + x = _a1 <-> _b2 + x = _a2)
6 5 abeqd
_G -> {x | _b1 + x = _a1} == {x | _b2 + x = _a2}
7 6 theeqd
_G -> the {x | _b1 + x = _a1} = the {x | _b2 + x = _a2}
8 7 conv sub
_G -> _a1 - _b1 = _a2 - _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (addeq)