Theorem b1eqd | index | src |

theorem b1eqd (_G: wff) (_n1 _n2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> b1 _n1 = b1 _n2 $;
StepHypRefExpression
1 hyp _nh
_G -> _n1 = _n2
2 1 b0eqd
_G -> b0 _n1 = b0 _n2
3 2 suceqd
_G -> suc (b0 _n1) = suc (b0 _n2)
4 3 conv b1
_G -> b1 _n1 = b1 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_peano (peano2, addeq)