theorem b1eqd (_G: wff) (_n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> b1 _n1 = b1 _n2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp _nh | _G -> _n1 = _n2 |
|
2 | 1 | b0eqd | _G -> b0 _n1 = b0 _n2 |
3 | 2 | suceqd | _G -> suc (b0 _n1) = suc (b0 _n2) |
4 | 3 | conv b1 | _G -> b1 _n1 = b1 _n2 |