Theorem b0eqd | index | src |

theorem b0eqd (_G: wff) (_n1 _n2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> b0 _n1 = b0 _n2 $;
StepHypRefExpression
1 hyp _nh
_G -> _n1 = _n2
2 1, 1 addeqd
_G -> _n1 + _n1 = _n2 + _n2
3 2 conv b0
_G -> b0 _n1 = b0 _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_mp), axs_peano (addeq)