Theorem eqm01 | index | src |

theorem eqm01 (a b: nat): $ mod(0): a = b <-> a = b $;
StepHypRefExpression
1 eqeq
a % 0 = a -> b % 0 = b -> (a % 0 = b % 0 <-> a = b)
2 1 conv eqm
a % 0 = a -> b % 0 = b -> (mod(0): a = b <-> a = b)
3 mod0
a % 0 = a
4 2, 3 ax_mp
b % 0 = b -> (mod(0): a = b <-> a = b)
5 mod0
b % 0 = b
6 4, 5 ax_mp
mod(0): a = b <-> a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)