Step | Hyp | Ref | Expression |
1 |
|
oreq |
(0 <=Z a <-> a = b0 (zabs a)) -> (a <=Z 0 <-> a = -uZ b0 (zabs a)) -> (0 <=Z a \/ a <=Z 0 <-> a = b0 (zabs a) \/ a = -uZ b0 (zabs a)) |
2 |
|
bitr2 |
(a = b0 (zabs a) <-> b0 (zabs a) = a) -> (b0 (zabs a) = a <-> 0 <=Z a) -> (0 <=Z a <-> a = b0 (zabs a)) |
3 |
|
eqcomb |
a = b0 (zabs a) <-> b0 (zabs a) = a |
4 |
2, 3 |
ax_mp |
(b0 (zabs a) = a <-> 0 <=Z a) -> (0 <=Z a <-> a = b0 (zabs a)) |
5 |
|
b0zabs |
b0 (zabs a) = a <-> 0 <=Z a |
6 |
4, 5 |
ax_mp |
0 <=Z a <-> a = b0 (zabs a) |
7 |
1, 6 |
ax_mp |
(a <=Z 0 <-> a = -uZ b0 (zabs a)) -> (0 <=Z a \/ a <=Z 0 <-> a = b0 (zabs a) \/ a = -uZ b0 (zabs a)) |
8 |
|
bitr3 |
(0 <=Z -uZ a <-> a <=Z 0) -> (0 <=Z -uZ a <-> a = -uZ b0 (zabs a)) -> (a <=Z 0 <-> a = -uZ b0 (zabs a)) |
9 |
|
zle0neg |
0 <=Z -uZ a <-> a <=Z 0 |
10 |
8, 9 |
ax_mp |
(0 <=Z -uZ a <-> a = -uZ b0 (zabs a)) -> (a <=Z 0 <-> a = -uZ b0 (zabs a)) |
11 |
|
bitr3 |
(b0 (zabs (-uZ a)) = -uZ a <-> 0 <=Z -uZ a) -> (b0 (zabs (-uZ a)) = -uZ a <-> a = -uZ b0 (zabs a)) -> (0 <=Z -uZ a <-> a = -uZ b0 (zabs a)) |
12 |
|
b0zabs |
b0 (zabs (-uZ a)) = -uZ a <-> 0 <=Z -uZ a |
13 |
11, 12 |
ax_mp |
(b0 (zabs (-uZ a)) = -uZ a <-> a = -uZ b0 (zabs a)) -> (0 <=Z -uZ a <-> a = -uZ b0 (zabs a)) |
14 |
|
bitr |
(b0 (zabs (-uZ a)) = -uZ a <-> b0 (zabs a) = -uZ a) -> (b0 (zabs a) = -uZ a <-> a = -uZ b0 (zabs a)) -> (b0 (zabs (-uZ a)) = -uZ a <-> a = -uZ b0 (zabs a)) |
15 |
|
eqeq1 |
b0 (zabs (-uZ a)) = b0 (zabs a) -> (b0 (zabs (-uZ a)) = -uZ a <-> b0 (zabs a) = -uZ a) |
16 |
|
b0eq |
zabs (-uZ a) = zabs a -> b0 (zabs (-uZ a)) = b0 (zabs a) |
17 |
|
zabsneg |
zabs (-uZ a) = zabs a |
18 |
16, 17 |
ax_mp |
b0 (zabs (-uZ a)) = b0 (zabs a) |
19 |
15, 18 |
ax_mp |
b0 (zabs (-uZ a)) = -uZ a <-> b0 (zabs a) = -uZ a |
20 |
14, 19 |
ax_mp |
(b0 (zabs a) = -uZ a <-> a = -uZ b0 (zabs a)) -> (b0 (zabs (-uZ a)) = -uZ a <-> a = -uZ b0 (zabs a)) |
21 |
|
eqznegcom |
b0 (zabs a) = -uZ a <-> a = -uZ b0 (zabs a) |
22 |
20, 21 |
ax_mp |
b0 (zabs (-uZ a)) = -uZ a <-> a = -uZ b0 (zabs a) |
23 |
13, 22 |
ax_mp |
0 <=Z -uZ a <-> a = -uZ b0 (zabs a) |
24 |
10, 23 |
ax_mp |
a <=Z 0 <-> a = -uZ b0 (zabs a) |
25 |
7, 24 |
ax_mp |
0 <=Z a \/ a <=Z 0 <-> a = b0 (zabs a) \/ a = -uZ b0 (zabs a) |
26 |
|
zleorle |
0 <=Z a \/ a <=Z 0 |
27 |
25, 26 |
mpbi |
a = b0 (zabs a) \/ a = -uZ b0 (zabs a) |