theorem b0zabs (a: nat): $ b0 (zabs a) = a <-> 0 <=Z a $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr | 
          (b0 (zabs a) = a <-> a = b0 (zabs a)) -> (a = b0 (zabs a) <-> 0 <=Z a) -> (b0 (zabs a) = a <-> 0 <=Z a)  | 
        
        
          | 2 | 
           | 
          eqcomb | 
          b0 (zabs a) = a <-> a = b0 (zabs a)  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          (a = b0 (zabs a) <-> 0 <=Z a) -> (b0 (zabs a) = a <-> 0 <=Z a)  | 
        
        
          | 4 | 
           | 
          zle0b0 | 
          0 <=Z b0 (zabs a)  | 
        
        
          | 5 | 
           | 
          zleeq2 | 
          a = b0 (zabs a) -> (0 <=Z a <-> 0 <=Z b0 (zabs a))  | 
        
        
          | 6 | 
          4, 5 | 
          mpbiri | 
          a = b0 (zabs a) -> 0 <=Z a  | 
        
        
          | 7 | 
           | 
          zle02eq | 
          0 <=Z a <-> a = b0 (a // 2)  | 
        
        
          | 8 | 
           | 
          id | 
          a = b0 (a // 2) -> a = b0 (a // 2)  | 
        
        
          | 9 | 
           | 
          zabsb0 | 
          zabs (b0 (a // 2)) = a // 2  | 
        
        
          | 10 | 
           | 
          zabseq | 
          a = b0 (a // 2) -> zabs a = zabs (b0 (a // 2))  | 
        
        
          | 11 | 
          9, 10 | 
          syl6eq | 
          a = b0 (a // 2) -> zabs a = a // 2  | 
        
        
          | 12 | 
          11 | 
          b0eqd | 
          a = b0 (a // 2) -> b0 (zabs a) = b0 (a // 2)  | 
        
        
          | 13 | 
          8, 12 | 
          eqtr4d | 
          a = b0 (a // 2) -> a = b0 (zabs a)  | 
        
        
          | 14 | 
          7, 13 | 
          sylbi | 
          0 <=Z a -> a = b0 (zabs a)  | 
        
        
          | 15 | 
          6, 14 | 
          ibii | 
          a = b0 (zabs a) <-> 0 <=Z a  | 
        
        
          | 16 | 
          3, 15 | 
          ax_mp | 
          b0 (zabs a) = a <-> 0 <=Z a  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)