theorem b0zabs (a: nat): $ b0 (zabs a) = a <-> 0 <=Z a $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr |
(b0 (zabs a) = a <-> a = b0 (zabs a)) -> (a = b0 (zabs a) <-> 0 <=Z a) -> (b0 (zabs a) = a <-> 0 <=Z a) |
| 2 |
|
eqcomb |
b0 (zabs a) = a <-> a = b0 (zabs a) |
| 3 |
1, 2 |
ax_mp |
(a = b0 (zabs a) <-> 0 <=Z a) -> (b0 (zabs a) = a <-> 0 <=Z a) |
| 4 |
|
zle0b0 |
0 <=Z b0 (zabs a) |
| 5 |
|
zleeq2 |
a = b0 (zabs a) -> (0 <=Z a <-> 0 <=Z b0 (zabs a)) |
| 6 |
4, 5 |
mpbiri |
a = b0 (zabs a) -> 0 <=Z a |
| 7 |
|
zle02eq |
0 <=Z a <-> a = b0 (a // 2) |
| 8 |
|
id |
a = b0 (a // 2) -> a = b0 (a // 2) |
| 9 |
|
zabsb0 |
zabs (b0 (a // 2)) = a // 2 |
| 10 |
|
zabseq |
a = b0 (a // 2) -> zabs a = zabs (b0 (a // 2)) |
| 11 |
9, 10 |
syl6eq |
a = b0 (a // 2) -> zabs a = a // 2 |
| 12 |
11 |
b0eqd |
a = b0 (a // 2) -> b0 (zabs a) = b0 (a // 2) |
| 13 |
8, 12 |
eqtr4d |
a = b0 (a // 2) -> a = b0 (zabs a) |
| 14 |
7, 13 |
sylbi |
0 <=Z a -> a = b0 (zabs a) |
| 15 |
6, 14 |
ibii |
a = b0 (zabs a) <-> 0 <=Z a |
| 16 |
3, 15 |
ax_mp |
b0 (zabs a) = a <-> 0 <=Z a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)