theorem zabseq0 (n: nat): $ zabs n = 0 <-> n = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(zabs n = 0 <-> zfst n = 0 /\ zsnd n = 0) -> (zfst n = 0 /\ zsnd n = 0 <-> n = 0) -> (zabs n = 0 <-> n = 0) |
2 |
|
addeq0 |
zfst n + zsnd n = 0 <-> zfst n = 0 /\ zsnd n = 0 |
3 |
2 |
conv zabs |
zabs n = 0 <-> zfst n = 0 /\ zsnd n = 0 |
4 |
1, 3 |
ax_mp |
(zfst n = 0 /\ zsnd n = 0 <-> n = 0) -> (zabs n = 0 <-> n = 0) |
5 |
|
zfstsndeq0 |
zfst n = 0 /\ zsnd n = 0 <-> n = 0 |
6 |
4, 5 |
ax_mp |
zabs n = 0 <-> n = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)