Theorem zabseq0 | index | src |

theorem zabseq0 (n: nat): $ zabs n = 0 <-> n = 0 $;
StepHypRefExpression
1 bitr
(zabs n = 0 <-> zfst n = 0 /\ zsnd n = 0) -> (zfst n = 0 /\ zsnd n = 0 <-> n = 0) -> (zabs n = 0 <-> n = 0)
2 addeq0
zfst n + zsnd n = 0 <-> zfst n = 0 /\ zsnd n = 0
3 2 conv zabs
zabs n = 0 <-> zfst n = 0 /\ zsnd n = 0
4 1, 3 ax_mp
(zfst n = 0 /\ zsnd n = 0 <-> n = 0) -> (zabs n = 0 <-> n = 0)
5 zfstsndeq0
zfst n = 0 /\ zsnd n = 0 <-> n = 0
6 4, 5 ax_mp
zabs n = 0 <-> n = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)