Theorem zabscom | index | src |

theorem zabscom (m n: nat): $ zabs (m -ZN n) = zabs (n -ZN m) $;
StepHypRefExpression
1 eqtr
zabs (m -ZN n) = m - n + (n - m) -> m - n + (n - m) = zabs (n -ZN m) -> zabs (m -ZN n) = zabs (n -ZN m)
2 zabszn
zabs (m -ZN n) = m - n + (n - m)
3 1, 2 ax_mp
m - n + (n - m) = zabs (n -ZN m) -> zabs (m -ZN n) = zabs (n -ZN m)
4 eqtr4
m - n + (n - m) = n - m + (m - n) -> zabs (n -ZN m) = n - m + (m - n) -> m - n + (n - m) = zabs (n -ZN m)
5 addcom
m - n + (n - m) = n - m + (m - n)
6 4, 5 ax_mp
zabs (n -ZN m) = n - m + (m - n) -> m - n + (n - m) = zabs (n -ZN m)
7 zabszn
zabs (n -ZN m) = n - m + (m - n)
8 6, 7 ax_mp
m - n + (n - m) = zabs (n -ZN m)
9 3, 8 ax_mp
zabs (m -ZN n) = zabs (n -ZN m)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)