Theorem lezabszn | index | src |

theorem lezabszn (m n: nat): $ n <= m -> zabs (m -ZN n) = m - n $;
StepHypRefExpression
1 zabszn
zabs (m -ZN n) = m - n + (n - m)
2 add0
m - n + 0 = m - n
3 lesubeq0
n <= m <-> n - m = 0
4 addeq2
n - m = 0 -> m - n + (n - m) = m - n + 0
5 3, 4 sylbi
n <= m -> m - n + (n - m) = m - n + 0
6 2, 5 syl6eq
n <= m -> m - n + (n - m) = m - n
7 1, 6 syl5eq
n <= m -> zabs (m -ZN n) = m - n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)