Theorem zabszn | index | src |

theorem zabszn (m n: nat): $ zabs (m -ZN n) = m - n + (n - m) $;
StepHypRefExpression
1 addeq
zfst (m -ZN n) = m - n -> zsnd (m -ZN n) = n - m -> zfst (m -ZN n) + zsnd (m -ZN n) = m - n + (n - m)
2 1 conv zabs
zfst (m -ZN n) = m - n -> zsnd (m -ZN n) = n - m -> zabs (m -ZN n) = m - n + (n - m)
3 zfstznsub
zfst (m -ZN n) = m - n
4 2, 3 ax_mp
zsnd (m -ZN n) = n - m -> zabs (m -ZN n) = m - n + (n - m)
5 zsndznsub
zsnd (m -ZN n) = n - m
6 4, 5 ax_mp
zabs (m -ZN n) = m - n + (n - m)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)