Theorem zsndznsub | index | src |

theorem zsndznsub (m n: nat): $ zsnd (m -ZN n) = n - m $;
StepHypRefExpression
2
zfst (-uZ (m -ZN n)) = zsnd (m -ZN n)
6
-uZ (m -ZN n) = n -ZN m
7
zfst (-uZ (m -ZN n)) = zfst (n -ZN m)
9
zfst (n -ZN m) = n - m
10
7, 9
zfst (-uZ (m -ZN n)) = n - m
11
2, 10
zsnd (m -ZN n) = n - m

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)