Theorem zsndznsub | index | src |

theorem zsndznsub (m n: nat): $ zsnd (m -ZN n) = n - m $;
StepHypRefExpression
1 eqtr3
zfst (-uZ (m -ZN n)) = zsnd (m -ZN n) -> zfst (-uZ (m -ZN n)) = n - m -> zsnd (m -ZN n) = n - m
2 zfstneg
zfst (-uZ (m -ZN n)) = zsnd (m -ZN n)
3 1, 2 ax_mp
zfst (-uZ (m -ZN n)) = n - m -> zsnd (m -ZN n) = n - m
4 eqtr
zfst (-uZ (m -ZN n)) = zfst (n -ZN m) -> zfst (n -ZN m) = n - m -> zfst (-uZ (m -ZN n)) = n - m
5 zfsteq
-uZ (m -ZN n) = n -ZN m -> zfst (-uZ (m -ZN n)) = zfst (n -ZN m)
6 znegzn
-uZ (m -ZN n) = n -ZN m
7 5, 6 ax_mp
zfst (-uZ (m -ZN n)) = zfst (n -ZN m)
8 4, 7 ax_mp
zfst (n -ZN m) = n - m -> zfst (-uZ (m -ZN n)) = n - m
9 zfstznsub
zfst (n -ZN m) = n - m
10 8, 9 ax_mp
zfst (-uZ (m -ZN n)) = n - m
11 3, 10 ax_mp
zsnd (m -ZN n) = n - m

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)