Theorem zneg0 | index | src |

theorem zneg0: $ -uZ 0 = 0 $;
StepHypRefExpression
1 eqtr3
-uZ (0 -ZN 0) = -uZ 0 -> -uZ (0 -ZN 0) = 0 -> -uZ 0 = 0
2 znegeq
0 -ZN 0 = 0 -> -uZ (0 -ZN 0) = -uZ 0
3 znsubid
0 -ZN 0 = 0
4 2, 3 ax_mp
-uZ (0 -ZN 0) = -uZ 0
5 1, 4 ax_mp
-uZ (0 -ZN 0) = 0 -> -uZ 0 = 0
6 eqtr
-uZ (0 -ZN 0) = 0 -ZN 0 -> 0 -ZN 0 = 0 -> -uZ (0 -ZN 0) = 0
7 znegzn
-uZ (0 -ZN 0) = 0 -ZN 0
8 6, 7 ax_mp
0 -ZN 0 = 0 -> -uZ (0 -ZN 0) = 0
9 8, 3 ax_mp
-uZ (0 -ZN 0) = 0
10 5, 9 ax_mp
-uZ 0 = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)