Theorem znsubid | index | src |

theorem znsubid (m: nat): $ m -ZN m = 0 $;
StepHypRefExpression
1 eqtr
m -ZN m = b0 (m - m) -> b0 (m - m) = 0 -> m -ZN m = 0
2 znsubpos
m <= m -> m -ZN m = b0 (m - m)
3 leid
m <= m
4 2, 3 ax_mp
m -ZN m = b0 (m - m)
5 1, 4 ax_mp
b0 (m - m) = 0 -> m -ZN m = 0
6 eqtr
b0 (m - m) = b0 0 -> b0 0 = 0 -> b0 (m - m) = 0
7 b0eq
m - m = 0 -> b0 (m - m) = b0 0
8 subid
m - m = 0
9 7, 8 ax_mp
b0 (m - m) = b0 0
10 6, 9 ax_mp
b0 0 = 0 -> b0 (m - m) = 0
11 b00
b0 0 = 0
12 10, 11 ax_mp
b0 (m - m) = 0
13 5, 12 ax_mp
m -ZN m = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)