theorem znsub02 (a: nat): $ a -ZN 0 = b0 a $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
a -ZN 0 = b0 (a - 0) -> b0 (a - 0) = b0 a -> a -ZN 0 = b0 a |
2 |
|
znsubpos |
0 <= a -> a -ZN 0 = b0 (a - 0) |
3 |
|
le01 |
0 <= a |
4 |
2, 3 |
ax_mp |
a -ZN 0 = b0 (a - 0) |
5 |
1, 4 |
ax_mp |
b0 (a - 0) = b0 a -> a -ZN 0 = b0 a |
6 |
|
b0eq |
a - 0 = a -> b0 (a - 0) = b0 a |
7 |
|
sub02 |
a - 0 = a |
8 |
6, 7 |
ax_mp |
b0 (a - 0) = b0 a |
9 |
5, 8 |
ax_mp |
a -ZN 0 = b0 a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)