Theorem znsub02 | index | src |

theorem znsub02 (a: nat): $ a -ZN 0 = b0 a $;
StepHypRefExpression
1 eqtr
a -ZN 0 = b0 (a - 0) -> b0 (a - 0) = b0 a -> a -ZN 0 = b0 a
2 znsubpos
0 <= a -> a -ZN 0 = b0 (a - 0)
3 le01
0 <= a
4 2, 3 ax_mp
a -ZN 0 = b0 (a - 0)
5 1, 4 ax_mp
b0 (a - 0) = b0 a -> a -ZN 0 = b0 a
6 b0eq
a - 0 = a -> b0 (a - 0) = b0 a
7 sub02
a - 0 = a
8 6, 7 ax_mp
b0 (a - 0) = b0 a
9 5, 8 ax_mp
a -ZN 0 = b0 a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)