Theorem znsubpos | index | src |

theorem znsubpos (m n: nat): $ n <= m -> m -ZN n = b0 (m - n) $;
StepHypRefExpression
1 lenlt
n <= m <-> ~m < n
2 ifneg
~m < n -> if (m < n) (b1 (n - suc m)) (b0 (m - n)) = b0 (m - n)
3 2 conv znsub
~m < n -> m -ZN n = b0 (m - n)
4 1, 3 sylbi
n <= m -> m -ZN n = b0 (m - n)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)