Theorem znsubneg | index | src |

theorem znsubneg (m n: nat): $ m < n -> m -ZN n = b1 (n - suc m) $;
StepHypRefExpression
1 ifpos
m < n -> if (m < n) (b1 (n - suc m)) (b0 (m - n)) = b1 (n - suc m)
2 1 conv znsub
m < n -> m -ZN n = b1 (n - suc m)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid)