theorem zfstneg (n: nat): $ zfst (-uZ n) = zsnd n $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
zfst (-uZ n) = zfst (-uZ n) -> zfst (-uZ n) = zsnd n -> zfst (-uZ n) = zsnd n |
2 |
|
zfsteq |
-uZ n = -uZ n -> zfst (-uZ n) = zfst (-uZ n) |
3 |
|
eqtr3 |
-uZ (zfst n -ZN zsnd n) = -uZ n -> -uZ (zfst n -ZN zsnd n) = -uZ n -> -uZ n = -uZ n |
4 |
|
znegzn |
-uZ (zfst n -ZN zsnd n) = zsnd n -ZN zfst n |
5 |
4 |
conv zneg |
-uZ (zfst n -ZN zsnd n) = -uZ n |
6 |
3, 5 |
ax_mp |
-uZ (zfst n -ZN zsnd n) = -uZ n -> -uZ n = -uZ n |
7 |
|
znegeq |
zfst n -ZN zsnd n = n -> -uZ (zfst n -ZN zsnd n) = -uZ n |
8 |
|
zfstsnd |
zfst n -ZN zsnd n = n |
9 |
7, 8 |
ax_mp |
-uZ (zfst n -ZN zsnd n) = -uZ n |
10 |
6, 9 |
ax_mp |
-uZ n = -uZ n |
11 |
2, 10 |
ax_mp |
zfst (-uZ n) = zfst (-uZ n) |
12 |
1, 11 |
ax_mp |
zfst (-uZ n) = zsnd n -> zfst (-uZ n) = zsnd n |
13 |
|
eqtr |
zfst (-uZ n) = zsnd n - zfst n -> zsnd n - zfst n = zsnd n -> zfst (-uZ n) = zsnd n |
14 |
|
zfstznsub |
zfst (zsnd n -ZN zfst n) = zsnd n - zfst n |
15 |
14 |
conv zneg |
zfst (-uZ n) = zsnd n - zfst n |
16 |
13, 15 |
ax_mp |
zsnd n - zfst n = zsnd n -> zfst (-uZ n) = zsnd n |
17 |
|
eor |
(zfst n = 0 -> zsnd n - zfst n = zsnd n) -> (zsnd n = 0 -> zsnd n - zfst n = zsnd n) -> zfst n = 0 \/ zsnd n = 0 -> zsnd n - zfst n = zsnd n |
18 |
|
sub02 |
zsnd n - 0 = zsnd n |
19 |
|
subeq2 |
zfst n = 0 -> zsnd n - zfst n = zsnd n - 0 |
20 |
18, 19 |
syl6eq |
zfst n = 0 -> zsnd n - zfst n = zsnd n |
21 |
17, 20 |
ax_mp |
(zsnd n = 0 -> zsnd n - zfst n = zsnd n) -> zfst n = 0 \/ zsnd n = 0 -> zsnd n - zfst n = zsnd n |
22 |
|
subeq1 |
zsnd n = 0 -> zsnd n - zfst n = 0 - zfst n |
23 |
|
sub01 |
0 - zfst n = 0 |
24 |
|
id |
zsnd n = 0 -> zsnd n = 0 |
25 |
23, 24 |
syl6eqr |
zsnd n = 0 -> zsnd n = 0 - zfst n |
26 |
22, 25 |
eqtr4d |
zsnd n = 0 -> zsnd n - zfst n = zsnd n |
27 |
21, 26 |
ax_mp |
zfst n = 0 \/ zsnd n = 0 -> zsnd n - zfst n = zsnd n |
28 |
|
zfstsnd0 |
zfst n = 0 \/ zsnd n = 0 |
29 |
27, 28 |
ax_mp |
zsnd n - zfst n = zsnd n |
30 |
16, 29 |
ax_mp |
zfst (-uZ n) = zsnd n |
31 |
12, 30 |
ax_mp |
zfst (-uZ n) = zsnd n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)