theorem zfstsnd0 (n: nat): $ zfst n = 0 \/ zsnd n = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
eor |
(n = b0 (n // 2) -> zfst n = 0 \/ zsnd n = 0) -> (n = b1 (n // 2) -> zfst n = 0 \/ zsnd n = 0) -> n = b0 (n // 2) \/ n = b1 (n // 2) -> zfst n = 0 \/ zsnd n = 0 |
2 |
|
zsndb0 |
zsnd (b0 (n // 2)) = 0 |
3 |
|
zsndeq |
n = b0 (n // 2) -> zsnd n = zsnd (b0 (n // 2)) |
4 |
2, 3 |
syl6eq |
n = b0 (n // 2) -> zsnd n = 0 |
5 |
4 |
orrd |
n = b0 (n // 2) -> zfst n = 0 \/ zsnd n = 0 |
6 |
1, 5 |
ax_mp |
(n = b1 (n // 2) -> zfst n = 0 \/ zsnd n = 0) -> n = b0 (n // 2) \/ n = b1 (n // 2) -> zfst n = 0 \/ zsnd n = 0 |
7 |
|
zfstb1 |
zfst (b1 (n // 2)) = 0 |
8 |
|
zfsteq |
n = b1 (n // 2) -> zfst n = zfst (b1 (n // 2)) |
9 |
7, 8 |
syl6eq |
n = b1 (n // 2) -> zfst n = 0 |
10 |
9 |
orld |
n = b1 (n // 2) -> zfst n = 0 \/ zsnd n = 0 |
11 |
6, 10 |
ax_mp |
n = b0 (n // 2) \/ n = b1 (n // 2) -> zfst n = 0 \/ zsnd n = 0 |
12 |
|
b0orb1 |
n = b0 (n // 2) \/ n = b1 (n // 2) |
13 |
11, 12 |
ax_mp |
zfst n = 0 \/ zsnd n = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)