Theorem zfstsubsnd | index | src |

theorem zfstsubsnd (n: nat): $ zfst n - zsnd n = zfst n $;
StepHypRefExpression
1 eor
(zfst n = 0 -> zfst n - zsnd n = zfst n) -> (zsnd n = 0 -> zfst n - zsnd n = zfst n) -> zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n
2 subeq1
zfst n = 0 -> zfst n - zsnd n = 0 - zsnd n
3 sub01
0 - zsnd n = 0
4 id
zfst n = 0 -> zfst n = 0
5 3, 4 syl6eqr
zfst n = 0 -> zfst n = 0 - zsnd n
6 2, 5 eqtr4d
zfst n = 0 -> zfst n - zsnd n = zfst n
7 1, 6 ax_mp
(zsnd n = 0 -> zfst n - zsnd n = zfst n) -> zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n
8 sub02
zfst n - 0 = zfst n
9 subeq2
zsnd n = 0 -> zfst n - zsnd n = zfst n - 0
10 8, 9 syl6eq
zsnd n = 0 -> zfst n - zsnd n = zfst n
11 7, 10 ax_mp
zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n
12 zfstsnd0
zfst n = 0 \/ zsnd n = 0
13 11, 12 ax_mp
zfst n - zsnd n = zfst n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)