theorem zfstsubsnd (n: nat): $ zfst n - zsnd n = zfst n $;
Step | Hyp | Ref | Expression |
1 |
|
eor |
(zfst n = 0 -> zfst n - zsnd n = zfst n) -> (zsnd n = 0 -> zfst n - zsnd n = zfst n) -> zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n |
2 |
|
subeq1 |
zfst n = 0 -> zfst n - zsnd n = 0 - zsnd n |
3 |
|
sub01 |
0 - zsnd n = 0 |
4 |
|
id |
zfst n = 0 -> zfst n = 0 |
5 |
3, 4 |
syl6eqr |
zfst n = 0 -> zfst n = 0 - zsnd n |
6 |
2, 5 |
eqtr4d |
zfst n = 0 -> zfst n - zsnd n = zfst n |
7 |
1, 6 |
ax_mp |
(zsnd n = 0 -> zfst n - zsnd n = zfst n) -> zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n |
8 |
|
sub02 |
zfst n - 0 = zfst n |
9 |
|
subeq2 |
zsnd n = 0 -> zfst n - zsnd n = zfst n - 0 |
10 |
8, 9 |
syl6eq |
zsnd n = 0 -> zfst n - zsnd n = zfst n |
11 |
7, 10 |
ax_mp |
zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n |
12 |
|
zfstsnd0 |
zfst n = 0 \/ zsnd n = 0 |
13 |
11, 12 |
ax_mp |
zfst n - zsnd n = zfst n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)