theorem zfstsubsnd (n: nat): $ zfst n - zsnd n = zfst n $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eor | (zfst n = 0 -> zfst n - zsnd n = zfst n) -> (zsnd n = 0 -> zfst n - zsnd n = zfst n) -> zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n | 
        
          | 2 |  | subeq1 | zfst n = 0 -> zfst n - zsnd n = 0 - zsnd n | 
        
          | 3 |  | sub01 | 0 - zsnd n = 0 | 
        
          | 4 |  | id | zfst n = 0 -> zfst n = 0 | 
        
          | 5 | 3, 4 | syl6eqr | zfst n = 0 -> zfst n = 0 - zsnd n | 
        
          | 6 | 2, 5 | eqtr4d | zfst n = 0 -> zfst n - zsnd n = zfst n | 
        
          | 7 | 1, 6 | ax_mp | (zsnd n = 0 -> zfst n - zsnd n = zfst n) -> zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n | 
        
          | 8 |  | sub02 | zfst n - 0 = zfst n | 
        
          | 9 |  | subeq2 | zsnd n = 0 -> zfst n - zsnd n = zfst n - 0 | 
        
          | 10 | 8, 9 | syl6eq | zsnd n = 0 -> zfst n - zsnd n = zfst n | 
        
          | 11 | 7, 10 | ax_mp | zfst n = 0 \/ zsnd n = 0 -> zfst n - zsnd n = zfst n | 
        
          | 12 |  | zfstsnd0 | zfst n = 0 \/ zsnd n = 0 | 
        
          | 13 | 11, 12 | ax_mp | zfst n - zsnd n = zfst n | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)