theorem sub01 (a: nat): $ 0 - a = 0 $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le02 | a <= 0 <-> a = 0 |
|
| 2 | sub02 | 0 - 0 = 0 |
|
| 3 | subeq2 | a = 0 -> 0 - a = 0 - 0 |
|
| 4 | 2, 3 | syl6eq | a = 0 -> 0 - a = 0 |
| 5 | 1, 4 | sylbi | a <= 0 -> 0 - a = 0 |
| 6 | nlesubeq0 | ~a <= 0 -> 0 - a = 0 |
|
| 7 | 5, 6 | cases | 0 - a = 0 |