Theorem sub01 | index | src |

theorem sub01 (a: nat): $ 0 - a = 0 $;
StepHypRefExpression
1 le02
a <= 0 <-> a = 0
2 sub02
0 - 0 = 0
3 subeq2
a = 0 -> 0 - a = 0 - 0
4 2, 3 syl6eq
a = 0 -> 0 - a = 0
5 1, 4 sylbi
a <= 0 -> 0 - a = 0
6 nlesubeq0
~a <= 0 -> 0 - a = 0
7 5, 6 cases
0 - a = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)