theorem pnpcan2 (a b c: nat): $ a + c - (b + c) = a - b $;
Step | Hyp | Ref | Expression |
1 |
|
eqsub1 |
a - b + (b + c) = a + c -> a + c - (b + c) = a - b |
2 |
|
addass |
a - b + b + c = a - b + (b + c) |
3 |
|
npcan |
b <= a -> a - b + b = a |
4 |
3 |
addeq1d |
b <= a -> a - b + b + c = a + c |
5 |
2, 4 |
syl5eqr |
b <= a -> a - b + (b + c) = a + c |
6 |
1, 5 |
syl |
b <= a -> a + c - (b + c) = a - b |
7 |
|
noteq |
(b <= a <-> b + c <= a + c) -> (~b <= a <-> ~b + c <= a + c) |
8 |
|
leadd1 |
b <= a <-> b + c <= a + c |
9 |
7, 8 |
ax_mp |
~b <= a <-> ~b + c <= a + c |
10 |
|
nlesubeq0 |
~b + c <= a + c -> a + c - (b + c) = 0 |
11 |
9, 10 |
sylbi |
~b <= a -> a + c - (b + c) = 0 |
12 |
|
nlesubeq0 |
~b <= a -> a - b = 0 |
13 |
11, 12 |
eqtr4d |
~b <= a -> a + c - (b + c) = a - b |
14 |
6, 13 |
cases |
a + c - (b + c) = a - b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)