Theorem zsndb0 | index | src |

theorem zsndb0 (n: nat): $ zsnd (b0 n) = 0 $;
StepHypRefExpression
1 eqtr
zsnd (b0 n) = (\ a2, 0) @ n -> (\ a2, 0) @ n = 0 -> zsnd (b0 n) = 0
2 casel
case (\ a2, 0) (\ a1, suc a1) @ b0 n = (\ a2, 0) @ n
3 2 conv zsnd
zsnd (b0 n) = (\ a2, 0) @ n
4 1, 3 ax_mp
(\ a2, 0) @ n = 0 -> zsnd (b0 n) = 0
5 eqidd
a2 = n -> 0 = 0
6 5 applame
(\ a2, 0) @ n = 0
7 4, 6 ax_mp
zsnd (b0 n) = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)