Theorem zabsneg | index | src |

theorem zabsneg (n: nat): $ zabs (-uZ n) = zabs n $;
StepHypRefExpression
1 eqtr
zabs (-uZ n) = zsnd (-uZ n) + zfst (-uZ n) -> zsnd (-uZ n) + zfst (-uZ n) = zabs n -> zabs (-uZ n) = zabs n
2 addcom
zfst (-uZ n) + zsnd (-uZ n) = zsnd (-uZ n) + zfst (-uZ n)
3 2 conv zabs
zabs (-uZ n) = zsnd (-uZ n) + zfst (-uZ n)
4 1, 3 ax_mp
zsnd (-uZ n) + zfst (-uZ n) = zabs n -> zabs (-uZ n) = zabs n
5 addeq
zsnd (-uZ n) = zfst n -> zfst (-uZ n) = zsnd n -> zsnd (-uZ n) + zfst (-uZ n) = zfst n + zsnd n
6 5 conv zabs
zsnd (-uZ n) = zfst n -> zfst (-uZ n) = zsnd n -> zsnd (-uZ n) + zfst (-uZ n) = zabs n
7 zsndneg
zsnd (-uZ n) = zfst n
8 6, 7 ax_mp
zfst (-uZ n) = zsnd n -> zsnd (-uZ n) + zfst (-uZ n) = zabs n
9 zfstneg
zfst (-uZ n) = zsnd n
10 8, 9 ax_mp
zsnd (-uZ n) + zfst (-uZ n) = zabs n
11 4, 10 ax_mp
zabs (-uZ n) = zabs n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)