Theorem zabsb0 | index | src |

theorem zabsb0 (n: nat): $ zabs (b0 n) = n $;
StepHypRefExpression
1 eqtr
zabs (b0 n) = n + 0 -> n + 0 = n -> zabs (b0 n) = n
2 addeq
zfst (b0 n) = n -> zsnd (b0 n) = 0 -> zfst (b0 n) + zsnd (b0 n) = n + 0
3 2 conv zabs
zfst (b0 n) = n -> zsnd (b0 n) = 0 -> zabs (b0 n) = n + 0
4 zfstb0
zfst (b0 n) = n
5 3, 4 ax_mp
zsnd (b0 n) = 0 -> zabs (b0 n) = n + 0
6 zsndb0
zsnd (b0 n) = 0
7 5, 6 ax_mp
zabs (b0 n) = n + 0
8 1, 7 ax_mp
n + 0 = n -> zabs (b0 n) = n
9 add0
n + 0 = n
10 8, 9 ax_mp
zabs (b0 n) = n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)