theorem zfstsndeq0 (n: nat): $ zfst n = 0 /\ zsnd n = 0 <-> n = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
zfstsnd |
zfst n -ZN zsnd n = n |
2 |
|
znsubid |
0 -ZN 0 = 0 |
3 |
|
anl |
zfst n = 0 /\ zsnd n = 0 -> zfst n = 0 |
4 |
|
anr |
zfst n = 0 /\ zsnd n = 0 -> zsnd n = 0 |
5 |
3, 4 |
znsubeqd |
zfst n = 0 /\ zsnd n = 0 -> zfst n -ZN zsnd n = 0 -ZN 0 |
6 |
2, 5 |
syl6eq |
zfst n = 0 /\ zsnd n = 0 -> zfst n -ZN zsnd n = 0 |
7 |
1, 6 |
syl5eqr |
zfst n = 0 /\ zsnd n = 0 -> n = 0 |
8 |
|
zfst0 |
zfst 0 = 0 |
9 |
|
zfsteq |
n = 0 -> zfst n = zfst 0 |
10 |
8, 9 |
syl6eq |
n = 0 -> zfst n = 0 |
11 |
|
zsnd0 |
zsnd 0 = 0 |
12 |
|
zsndeq |
n = 0 -> zsnd n = zsnd 0 |
13 |
11, 12 |
syl6eq |
n = 0 -> zsnd n = 0 |
14 |
10, 13 |
iand |
n = 0 -> zfst n = 0 /\ zsnd n = 0 |
15 |
7, 14 |
ibii |
zfst n = 0 /\ zsnd n = 0 <-> n = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)