Theorem zfstsndeq0 | index | src |

theorem zfstsndeq0 (n: nat): $ zfst n = 0 /\ zsnd n = 0 <-> n = 0 $;
StepHypRefExpression
1 zfstsnd
zfst n -ZN zsnd n = n
2 znsubid
0 -ZN 0 = 0
3 anl
zfst n = 0 /\ zsnd n = 0 -> zfst n = 0
4 anr
zfst n = 0 /\ zsnd n = 0 -> zsnd n = 0
5 3, 4 znsubeqd
zfst n = 0 /\ zsnd n = 0 -> zfst n -ZN zsnd n = 0 -ZN 0
6 2, 5 syl6eq
zfst n = 0 /\ zsnd n = 0 -> zfst n -ZN zsnd n = 0
7 1, 6 syl5eqr
zfst n = 0 /\ zsnd n = 0 -> n = 0
8 zfst0
zfst 0 = 0
9 zfsteq
n = 0 -> zfst n = zfst 0
10 8, 9 syl6eq
n = 0 -> zfst n = 0
11 zsnd0
zsnd 0 = 0
12 zsndeq
n = 0 -> zsnd n = zsnd 0
13 11, 12 syl6eq
n = 0 -> zsnd n = 0
14 10, 13 iand
n = 0 -> zfst n = 0 /\ zsnd n = 0
15 7, 14 ibii
zfst n = 0 /\ zsnd n = 0 <-> n = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)