Theorem zfstsndeq0 | index | src |

theorem zfstsndeq0 (n: nat): $ zfst n = 0 /\ zsnd n = 0 <-> n = 0 $;
StepHypRefExpression
1
zfst n -ZN zsnd n = n
2
0 -ZN 0 = 0
3
zfst n = 0 /\ zsnd n = 0 -> zfst n = 0
4
zfst n = 0 /\ zsnd n = 0 -> zsnd n = 0
5
3, 4
zfst n = 0 /\ zsnd n = 0 -> zfst n -ZN zsnd n = 0 -ZN 0
6
2, 5
zfst n = 0 /\ zsnd n = 0 -> zfst n -ZN zsnd n = 0
7
1, 6
zfst n = 0 /\ zsnd n = 0 -> n = 0
8
zfst 0 = 0
9
n = 0 -> zfst n = zfst 0
10
8, 9
n = 0 -> zfst n = 0
11
zsnd 0 = 0
12
n = 0 -> zsnd n = zsnd 0
13
n = 0 -> zsnd n = 0
14
n = 0 -> zfst n = 0 /\ zsnd n = 0
15
7, 14
zfst n = 0 /\ zsnd n = 0 <-> n = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)