Theorem zfst0 | index | src |

theorem zfst0: $ zfst 0 = 0 $;
StepHypRefExpression
1 eqtr3
zfst (b0 0) = zfst 0 -> zfst (b0 0) = 0 -> zfst 0 = 0
2 zfsteq
b0 0 = 0 -> zfst (b0 0) = zfst 0
3 b00
b0 0 = 0
4 2, 3 ax_mp
zfst (b0 0) = zfst 0
5 1, 4 ax_mp
zfst (b0 0) = 0 -> zfst 0 = 0
6 zfstb0
zfst (b0 0) = 0
7 5, 6 ax_mp
zfst 0 = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)