Theorem zle0b0 | index | src |

theorem zle0b0 (a: nat): $ 0 <=Z b0 a $;
StepHypRefExpression
1 zle02
0 <=Z b0 a <-> ~odd (b0 a)
2 b0odd
~odd (b0 a)
3 1, 2 mpbir
0 <=Z b0 a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)