Theorem b0odd | index | src |

theorem b0odd (n: nat): $ ~odd (b0 n) $;
StepHypRefExpression
1 con2b
(odd (b0 n) <-> ~2 || b0 n) -> (2 || b0 n <-> ~odd (b0 n))
2 odddvd
odd (b0 n) <-> ~2 || b0 n
3 1, 2 ax_mp
2 || b0 n <-> ~odd (b0 n)
4 b0dvd2
2 || b0 n
5 3, 4 mpbi
~odd (b0 n)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)