theorem b0odd (n: nat): $ ~odd (b0 n) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2b | (odd (b0 n) <-> ~2 || b0 n) -> (2 || b0 n <-> ~odd (b0 n)) |
|
| 2 | odddvd | odd (b0 n) <-> ~2 || b0 n |
|
| 3 | 1, 2 | ax_mp | 2 || b0 n <-> ~odd (b0 n) |
| 4 | b0dvd2 | 2 || b0 n |
|
| 5 | 3, 4 | mpbi | ~odd (b0 n) |