Theorem odddvd | index | src |

theorem odddvd (n: nat): $ odd n <-> ~2 || n $;
StepHypRefExpression
1 bitr
(odd n <-> true (n % 2)) -> (true (n % 2) <-> ~2 || n) -> (odd n <-> ~2 || n)
2 dfodd2
odd n <-> true (n % 2)
3 1, 2 ax_mp
(true (n % 2) <-> ~2 || n) -> (odd n <-> ~2 || n)
4 noteq
(n % 2 = 0 <-> 2 || n) -> (~n % 2 = 0 <-> ~2 || n)
5 4 conv ne, true
(n % 2 = 0 <-> 2 || n) -> (true (n % 2) <-> ~2 || n)
6 modeq0
n % 2 = 0 <-> 2 || n
7 5, 6 ax_mp
true (n % 2) <-> ~2 || n
8 3, 7 ax_mp
odd n <-> ~2 || n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)