theorem dfodd2 (n: nat): $ odd n <-> true (n % 2) $;
Step | Hyp | Ref | Expression |
1 |
|
bicom |
(true (n % 2) <-> odd n) -> (odd n <-> true (n % 2)) |
2 |
|
dftrue2 |
bool (n % 2) -> (true (n % 2) <-> n % 2 = 1) |
3 |
2 |
conv odd |
bool (n % 2) -> (true (n % 2) <-> odd n) |
4 |
|
boolmod2 |
bool (n % 2) |
5 |
3, 4 |
ax_mp |
true (n % 2) <-> odd n |
6 |
1, 5 |
ax_mp |
odd n <-> true (n % 2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)