Theorem dfodd2 | index | src |

theorem dfodd2 (n: nat): $ odd n <-> true (n % 2) $;
StepHypRefExpression
1 bicom
(true (n % 2) <-> odd n) -> (odd n <-> true (n % 2))
2 dftrue2
bool (n % 2) -> (true (n % 2) <-> n % 2 = 1)
3 2 conv odd
bool (n % 2) -> (true (n % 2) <-> odd n)
4 boolmod2
bool (n % 2)
5 3, 4 ax_mp
true (n % 2) <-> odd n
6 1, 5 ax_mp
odd n <-> true (n % 2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)