Theorem b1dvd2 | index | src |

theorem b1dvd2 (n: nat): $ ~2 || b1 n $;
StepHypRefExpression
1 con2b
(2 || b1 n <-> ~2 || b0 n) -> (2 || b0 n <-> ~2 || b1 n)
2 d2dvdS
2 || suc (b0 n) <-> ~2 || b0 n
3 2 conv b1
2 || b1 n <-> ~2 || b0 n
4 1, 3 ax_mp
2 || b0 n <-> ~2 || b1 n
5 b0dvd2
2 || b0 n
6 4, 5 mpbi
~2 || b1 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)