Theorem
b0dvd2
≪
|
index
|
src
|
≫
theorem b0dvd2 (n: nat): $ 2 || b0 n $;
Step
Hyp
Ref
Expression
1
idvd
n * 2 = b0 n -> 2 || b0 n
2
b0mul22
n * 2 = b0 n
3
1
,
2
ax_mp
2 || b0 n
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
,
itru
)
,
axs_pred_calc
(
ax_gen
,
ax_4
,
ax_5
,
ax_6
,
ax_7
,
ax_10
,
ax_11
,
ax_12
)
,
axs_peano
(
peano2
,
peano5
,
addeq
,
muleq
,
add0
,
addS
,
mul0
,
mulS
)