Theorem b1mul21 | index | src |

theorem b1mul21 (n: nat): $ 2 * n + 1 = b1 n $;
StepHypRefExpression
1 eqtr
2 * n + 1 = b0 n + 1 -> b0 n + 1 = b1 n -> 2 * n + 1 = b1 n
2 addeq1
2 * n = b0 n -> 2 * n + 1 = b0 n + 1
3 b0mul21
2 * n = b0 n
4 2, 3 ax_mp
2 * n + 1 = b0 n + 1
5 1, 4 ax_mp
b0 n + 1 = b1 n -> 2 * n + 1 = b1 n
6 add12
b0 n + 1 = suc (b0 n)
7 6 conv b1
b0 n + 1 = b1 n
8 5, 7 ax_mp
2 * n + 1 = b1 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)