Theorem boolmod2 | index | src |

theorem boolmod2 (n: nat): $ bool (n % 2) $;
StepHypRefExpression
1 modlt
2 != 0 -> n % 2 < 2
2 1 conv bool
2 != 0 -> bool (n % 2)
3 d2ne0
2 != 0
4 2, 3 ax_mp
bool (n % 2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)