Theorem div2lt | index | src |

theorem div2lt (n: nat): $ 0 < n -> n // 2 < n $;
StepHypRefExpression
1 divltmul1
2 != 0 -> (n // 2 < n <-> n < 2 * n)
2 d2ne0
2 != 0
3 1, 2 ax_mp
n // 2 < n <-> n < 2 * n
4 lteq1
1 * n = n -> (1 * n < 2 * n <-> n < 2 * n)
5 mul11
1 * n = n
6 4, 5 ax_mp
1 * n < 2 * n <-> n < 2 * n
7 d1lt2
1 < 2
8 ltmul1
0 < n -> (1 < 2 <-> 1 * n < 2 * n)
9 7, 8 mpbii
0 < n -> 1 * n < 2 * n
10 6, 9 sylib
0 < n -> n < 2 * n
11 3, 10 sylibr
0 < n -> n // 2 < n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)