theorem div2lt (n: nat): $ 0 < n -> n // 2 < n $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          divltmul1 | 
          2 != 0 -> (n // 2 < n <-> n < 2 * n)  | 
        
        
          | 2 | 
           | 
          d2ne0 | 
          2 != 0  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          n // 2 < n <-> n < 2 * n  | 
        
        
          | 4 | 
           | 
          lteq1 | 
          1 * n = n -> (1 * n < 2 * n <-> n < 2 * n)  | 
        
        
          | 5 | 
           | 
          mul11 | 
          1 * n = n  | 
        
        
          | 6 | 
          4, 5 | 
          ax_mp | 
          1 * n < 2 * n <-> n < 2 * n  | 
        
        
          | 7 | 
           | 
          d1lt2 | 
          1 < 2  | 
        
        
          | 8 | 
           | 
          ltmul1 | 
          0 < n -> (1 < 2 <-> 1 * n < 2 * n)  | 
        
        
          | 9 | 
          7, 8 | 
          mpbii | 
          0 < n -> 1 * n < 2 * n  | 
        
        
          | 10 | 
          6, 9 | 
          sylib | 
          0 < n -> n < 2 * n  | 
        
        
          | 11 | 
          3, 10 | 
          sylibr | 
          0 < n -> n // 2 < n  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)