Theorem dvdsubmod | index | src |

theorem dvdsubmod (a n: nat): $ n || a - a % n $;
StepHypRefExpression
1 idvd2
n * (a // n) = a - a % n -> n || a - a % n
2 eqcom
a - a % n = n * (a // n) -> n * (a // n) = a - a % n
3 eqsub1
n * (a // n) + a % n = a -> a - a % n = n * (a // n)
4 divmod
n * (a // n) + a % n = a
5 3, 4 ax_mp
a - a % n = n * (a // n)
6 2, 5 ax_mp
n * (a // n) = a - a % n
7 1, 6 ax_mp
n || a - a % n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)