theorem dvdsubmod (a n: nat): $ n || a - a % n $;
Step | Hyp | Ref | Expression |
1 |
|
idvd2 |
n * (a // n) = a - a % n -> n || a - a % n |
2 |
|
eqcom |
a - a % n = n * (a // n) -> n * (a // n) = a - a % n |
3 |
|
eqsub1 |
n * (a // n) + a % n = a -> a - a % n = n * (a // n) |
4 |
|
divmod |
n * (a // n) + a % n = a |
5 |
3, 4 |
ax_mp |
a - a % n = n * (a // n) |
6 |
2, 5 |
ax_mp |
n * (a // n) = a - a % n |
7 |
1, 6 |
ax_mp |
n || a - a % n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)