Theorem dftrue2 | index | src |

theorem dftrue2 (n: nat): $ bool n -> (true n <-> n = 1) $;
StepHypRefExpression
1 bi1
(bool n <-> true n -> n = 1) -> bool n -> true n -> n = 1
2 bool01
bool n <-> n = 0 \/ n = 1
3 2 conv ne, or, true
bool n <-> true n -> n = 1
4 1, 3 ax_mp
bool n -> true n -> n = 1
5 d1ne0
1 != 0
6 neeq1
n = 1 -> (n != 0 <-> 1 != 0)
7 6 conv true
n = 1 -> (true n <-> 1 != 0)
8 5, 7 mpbiri
n = 1 -> true n
9 8 a1i
bool n -> n = 1 -> true n
10 4, 9 ibid
bool n -> (true n <-> n = 1)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)