theorem boolnat (p: wff): $ bool (nat p) $;
Step | Hyp | Ref | Expression |
1 |
|
d1lt2 |
1 < 2 |
2 |
|
ifpos |
p -> if p 1 0 = 1 |
3 |
2 |
conv nat |
p -> nat p = 1 |
4 |
3 |
lteq1d |
p -> (nat p < 2 <-> 1 < 2) |
5 |
4 |
conv bool |
p -> (bool (nat p) <-> 1 < 2) |
6 |
1, 5 |
mpbiri |
p -> bool (nat p) |
7 |
|
d0lt2 |
0 < 2 |
8 |
|
ifneg |
~p -> if p 1 0 = 0 |
9 |
8 |
conv nat |
~p -> nat p = 0 |
10 |
9 |
lteq1d |
~p -> (nat p < 2 <-> 0 < 2) |
11 |
10 |
conv bool |
~p -> (bool (nat p) <-> 0 < 2) |
12 |
7, 11 |
mpbiri |
~p -> bool (nat p) |
13 |
6, 12 |
cases |
bool (nat p) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)