theorem truenat (p: wff): $ true (nat p) <-> p $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          con1 | 
          (~p -> nat p = 0) -> ~nat p = 0 -> p  | 
        
        
          | 2 | 
          1 | 
          conv ne, true | 
          (~p -> nat p = 0) -> true (nat p) -> p  | 
        
        
          | 3 | 
           | 
          ifneg | 
          ~p -> if p 1 0 = 0  | 
        
        
          | 4 | 
          3 | 
          conv nat | 
          ~p -> nat p = 0  | 
        
        
          | 5 | 
          2, 4 | 
          ax_mp | 
          true (nat p) -> p  | 
        
        
          | 6 | 
           | 
          d1ne0 | 
          1 != 0  | 
        
        
          | 7 | 
           | 
          ifpos | 
          p -> if p 1 0 = 1  | 
        
        
          | 8 | 
          7 | 
          conv nat | 
          p -> nat p = 1  | 
        
        
          | 9 | 
          8 | 
          neeq1d | 
          p -> (nat p != 0 <-> 1 != 0)  | 
        
        
          | 10 | 
          9 | 
          conv true | 
          p -> (true (nat p) <-> 1 != 0)  | 
        
        
          | 11 | 
          6, 10 | 
          mpbiri | 
          p -> true (nat p)  | 
        
        
          | 12 | 
          5, 11 | 
          ibii | 
          true (nat p) <-> p  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid),
    
axs_peano
     (peano1)