theorem truenat (p: wff): $ true (nat p) <-> p $;
Step | Hyp | Ref | Expression |
1 |
|
con1 |
(~p -> nat p = 0) -> ~nat p = 0 -> p |
2 |
1 |
conv ne, true |
(~p -> nat p = 0) -> true (nat p) -> p |
3 |
|
ifneg |
~p -> if p 1 0 = 0 |
4 |
3 |
conv nat |
~p -> nat p = 0 |
5 |
2, 4 |
ax_mp |
true (nat p) -> p |
6 |
|
d1ne0 |
1 != 0 |
7 |
|
ifpos |
p -> if p 1 0 = 1 |
8 |
7 |
conv nat |
p -> nat p = 1 |
9 |
8 |
neeq1d |
p -> (nat p != 0 <-> 1 != 0) |
10 |
9 |
conv true |
p -> (true (nat p) <-> 1 != 0) |
11 |
6, 10 |
mpbiri |
p -> true (nat p) |
12 |
5, 11 |
ibii |
true (nat p) <-> p |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1)