theorem nateq1 (p: wff): $ nat p = 1 <-> p $;
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(true (nat p) <-> nat p = 1) -> (true (nat p) <-> p) -> (nat p = 1 <-> p) |
2 |
|
dftrue2 |
bool (nat p) -> (true (nat p) <-> nat p = 1) |
3 |
|
boolnat |
bool (nat p) |
4 |
2, 3 |
ax_mp |
true (nat p) <-> nat p = 1 |
5 |
1, 4 |
ax_mp |
(true (nat p) <-> p) -> (nat p = 1 <-> p) |
6 |
|
truenat |
true (nat p) <-> p |
7 |
5, 6 |
ax_mp |
nat p = 1 <-> p |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)