Theorem nateq1 | index | src |

theorem nateq1 (p: wff): $ nat p = 1 <-> p $;
StepHypRefExpression
1 bitr3
(true (nat p) <-> nat p = 1) -> (true (nat p) <-> p) -> (nat p = 1 <-> p)
2 dftrue2
bool (nat p) -> (true (nat p) <-> nat p = 1)
3 boolnat
bool (nat p)
4 2, 3 ax_mp
true (nat p) <-> nat p = 1
5 1, 4 ax_mp
(true (nat p) <-> p) -> (nat p = 1 <-> p)
6 truenat
true (nat p) <-> p
7 5, 6 ax_mp
nat p = 1 <-> p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)