Theorem nateq0 | index | src |

theorem nateq0 (p: wff): $ nat p = 0 <-> ~p $;
StepHypRefExpression
1 con2b
(p <-> ~nat p = 0) -> (nat p = 0 <-> ~p)
2 bicom
(~nat p = 0 <-> p) -> (p <-> ~nat p = 0)
3 truenat
true (nat p) <-> p
4 3 conv ne, true
~nat p = 0 <-> p
5 2, 4 ax_mp
p <-> ~nat p = 0
6 1, 5 ax_mp
nat p = 0 <-> ~p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1)