Theorem
nat1
≪
|
index
|
src
|
≫
theorem nat1: $ nat T. = 1 $;
Step
Hyp
Ref
Expression
1
nateq1
nat T. = 1 <-> T.
2
itru
T.
3
1
,
2
mpbir
nat T. = 1
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
,
itru
)
,
axs_pred_calc
(
ax_gen
,
ax_4
,
ax_5
,
ax_6
,
ax_7
,
ax_10
,
ax_11
,
ax_12
)
,
axs_set
(
elab
,
ax_8
)
,
axs_the
(
theid
)
,
axs_peano
(
peano1
,
peano2
,
peano5
,
addeq
,
add0
,
addS
)