Theorem
nat0
≪
|
index
|
src
|
≫
theorem nat0: $ nat F. = 0 $;
Step
Hyp
Ref
Expression
1
nateq0
nat F. = 0 <-> ~F.
2
notfal
~F.
3
1
,
2
mpbir
nat F. = 0
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
,
itru
)
,
axs_pred_calc
(
ax_gen
,
ax_4
,
ax_5
,
ax_6
,
ax_7
,
ax_10
,
ax_11
,
ax_12
)
,
axs_set
(
elab
,
ax_8
)
,
axs_the
(
theid
)
,
axs_peano
(
peano1
)