theorem nattrue (n: nat): $ bool n -> nat (true n) = n $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bool01 | bool n <-> n = 0 \/ n = 1 | 
        
          | 2 |  | eor | (n = 0 -> nat (true n) = n) -> (n = 1 -> nat (true n) = n) -> n = 0 \/ n = 1 -> nat (true n) = n | 
        
          | 3 |  | trueeq | n = 0 -> (true n <-> true 0) | 
        
          | 4 | 3 | nateqd | n = 0 -> nat (true n) = nat (true 0) | 
        
          | 5 |  | ifneg | ~true 0 -> if (true 0) 1 0 = 0 | 
        
          | 6 | 5 | conv nat | ~true 0 -> nat (true 0) = 0 | 
        
          | 7 |  | true0 | ~true 0 | 
        
          | 8 | 6, 7 | ax_mp | nat (true 0) = 0 | 
        
          | 9 |  | id | n = 0 -> n = 0 | 
        
          | 10 | 8, 9 | syl6eqr | n = 0 -> n = nat (true 0) | 
        
          | 11 | 4, 10 | eqtr4d | n = 0 -> nat (true n) = n | 
        
          | 12 | 2, 11 | ax_mp | (n = 1 -> nat (true n) = n) -> n = 0 \/ n = 1 -> nat (true n) = n | 
        
          | 13 |  | trueeq | n = 1 -> (true n <-> true 1) | 
        
          | 14 | 13 | nateqd | n = 1 -> nat (true n) = nat (true 1) | 
        
          | 15 |  | ifpos | true 1 -> if (true 1) 1 0 = 1 | 
        
          | 16 | 15 | conv nat | true 1 -> nat (true 1) = 1 | 
        
          | 17 |  | true1 | true 1 | 
        
          | 18 | 16, 17 | ax_mp | nat (true 1) = 1 | 
        
          | 19 |  | id | n = 1 -> n = 1 | 
        
          | 20 | 18, 19 | syl6eqr | n = 1 -> n = nat (true 1) | 
        
          | 21 | 14, 20 | eqtr4d | n = 1 -> nat (true n) = n | 
        
          | 22 | 12, 21 | ax_mp | n = 0 \/ n = 1 -> nat (true n) = n | 
        
          | 23 | 1, 22 | sylbi | bool n -> nat (true n) = n | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      add0,
      addS)