theorem nattrue (n: nat): $ bool n -> nat (true n) = n $;
Step | Hyp | Ref | Expression |
1 |
|
bool01 |
bool n <-> n = 0 \/ n = 1 |
2 |
|
eor |
(n = 0 -> nat (true n) = n) -> (n = 1 -> nat (true n) = n) -> n = 0 \/ n = 1 -> nat (true n) = n |
3 |
|
trueeq |
n = 0 -> (true n <-> true 0) |
4 |
3 |
nateqd |
n = 0 -> nat (true n) = nat (true 0) |
5 |
|
ifneg |
~true 0 -> if (true 0) 1 0 = 0 |
6 |
5 |
conv nat |
~true 0 -> nat (true 0) = 0 |
7 |
|
true0 |
~true 0 |
8 |
6, 7 |
ax_mp |
nat (true 0) = 0 |
9 |
|
id |
n = 0 -> n = 0 |
10 |
8, 9 |
syl6eqr |
n = 0 -> n = nat (true 0) |
11 |
4, 10 |
eqtr4d |
n = 0 -> nat (true n) = n |
12 |
2, 11 |
ax_mp |
(n = 1 -> nat (true n) = n) -> n = 0 \/ n = 1 -> nat (true n) = n |
13 |
|
trueeq |
n = 1 -> (true n <-> true 1) |
14 |
13 |
nateqd |
n = 1 -> nat (true n) = nat (true 1) |
15 |
|
ifpos |
true 1 -> if (true 1) 1 0 = 1 |
16 |
15 |
conv nat |
true 1 -> nat (true 1) = 1 |
17 |
|
true1 |
true 1 |
18 |
16, 17 |
ax_mp |
nat (true 1) = 1 |
19 |
|
id |
n = 1 -> n = 1 |
20 |
18, 19 |
syl6eqr |
n = 1 -> n = nat (true 1) |
21 |
14, 20 |
eqtr4d |
n = 1 -> nat (true n) = n |
22 |
12, 21 |
ax_mp |
n = 0 \/ n = 1 -> nat (true n) = n |
23 |
1, 22 |
sylbi |
bool n -> nat (true n) = n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)