Theorem natle | index | src |

theorem natle (p q: wff): $ p -> q <-> nat p <= nat q $;
StepHypRefExpression
1 bicom
(nat p <= nat q <-> p -> q) -> (p -> q <-> nat p <= nat q)
2 bitr
(nat p <= nat q <-> true (nat p) -> true (nat q)) -> (true (nat p) -> true (nat q) <-> p -> q) -> (nat p <= nat q <-> p -> q)
3 letrueb
bool (nat p) -> (nat p <= nat q <-> true (nat p) -> true (nat q))
4 boolnat
bool (nat p)
5 3, 4 ax_mp
nat p <= nat q <-> true (nat p) -> true (nat q)
6 2, 5 ax_mp
(true (nat p) -> true (nat q) <-> p -> q) -> (nat p <= nat q <-> p -> q)
7 truenat
true (nat p) <-> p
8 truenat
true (nat q) <-> q
9 7, 8 imeqi
true (nat p) -> true (nat q) <-> p -> q
10 6, 9 ax_mp
nat p <= nat q <-> p -> q
11 1, 10 ax_mp
p -> q <-> nat p <= nat q

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)