theorem natle (p q: wff): $ p -> q <-> nat p <= nat q $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bicom | (nat p <= nat q <-> p -> q) -> (p -> q <-> nat p <= nat q) | 
        
          | 2 |  | bitr | (nat p <= nat q <-> true (nat p) -> true (nat q)) -> (true (nat p) -> true (nat q) <-> p -> q) -> (nat p <= nat q <-> p -> q) | 
        
          | 3 |  | letrueb | bool (nat p) -> (nat p <= nat q <-> true (nat p) -> true (nat q)) | 
        
          | 4 |  | boolnat | bool (nat p) | 
        
          | 5 | 3, 4 | ax_mp | nat p <= nat q <-> true (nat p) -> true (nat q) | 
        
          | 6 | 2, 5 | ax_mp | (true (nat p) -> true (nat q) <-> p -> q) -> (nat p <= nat q <-> p -> q) | 
        
          | 7 |  | truenat | true (nat p) <-> p | 
        
          | 8 |  | truenat | true (nat q) <-> q | 
        
          | 9 | 7, 8 | imeqi | true (nat p) -> true (nat q) <-> p -> q | 
        
          | 10 | 6, 9 | ax_mp | nat p <= nat q <-> p -> q | 
        
          | 11 | 1, 10 | ax_mp | p -> q <-> nat p <= nat q | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      add0,
      addS)