theorem natle (p q: wff): $ p -> q <-> nat p <= nat q $;
Step | Hyp | Ref | Expression |
1 |
|
bicom |
(nat p <= nat q <-> p -> q) -> (p -> q <-> nat p <= nat q) |
2 |
|
bitr |
(nat p <= nat q <-> true (nat p) -> true (nat q)) -> (true (nat p) -> true (nat q) <-> p -> q) -> (nat p <= nat q <-> p -> q) |
3 |
|
letrueb |
bool (nat p) -> (nat p <= nat q <-> true (nat p) -> true (nat q)) |
4 |
|
boolnat |
bool (nat p) |
5 |
3, 4 |
ax_mp |
nat p <= nat q <-> true (nat p) -> true (nat q) |
6 |
2, 5 |
ax_mp |
(true (nat p) -> true (nat q) <-> p -> q) -> (nat p <= nat q <-> p -> q) |
7 |
|
truenat |
true (nat p) <-> p |
8 |
|
truenat |
true (nat q) <-> q |
9 |
7, 8 |
imeqi |
true (nat p) -> true (nat q) <-> p -> q |
10 |
6, 9 |
ax_mp |
nat p <= nat q <-> p -> q |
11 |
1, 10 |
ax_mp |
p -> q <-> nat p <= nat q |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)