theorem bool01 (n: nat): $ bool n <-> n = 0 \/ n = 1 $;
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(n <= 1 <-> bool n) -> (n <= 1 <-> n = 0 \/ n = 1) -> (bool n <-> n = 0 \/ n = 1) |
2 |
|
leltsuc |
n <= 1 <-> n < suc 1 |
3 |
2 |
conv bool, d2 |
n <= 1 <-> bool n |
4 |
1, 3 |
ax_mp |
(n <= 1 <-> n = 0 \/ n = 1) -> (bool n <-> n = 0 \/ n = 1) |
5 |
|
bitr |
(n <= 1 <-> n < 1 \/ n = 1) -> (n < 1 \/ n = 1 <-> n = 0 \/ n = 1) -> (n <= 1 <-> n = 0 \/ n = 1) |
6 |
|
leloe |
n <= 1 <-> n < 1 \/ n = 1 |
7 |
5, 6 |
ax_mp |
(n < 1 \/ n = 1 <-> n = 0 \/ n = 1) -> (n <= 1 <-> n = 0 \/ n = 1) |
8 |
|
lt12 |
n < 1 <-> n = 0 |
9 |
8 |
oreq1i |
n < 1 \/ n = 1 <-> n = 0 \/ n = 1 |
10 |
7, 9 |
ax_mp |
n <= 1 <-> n = 0 \/ n = 1 |
11 |
4, 10 |
ax_mp |
bool n <-> n = 0 \/ n = 1 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)