Theorem zle0neg | index | src |

theorem zle0neg (a: nat): $ 0 <=Z -uZ a <-> a <=Z 0 $;
StepHypRefExpression
1 noteq
(-uZ a <Z 0 <-> 0 <Z a) -> (~-uZ a <Z 0 <-> ~0 <Z a)
2 1 conv zle
(-uZ a <Z 0 <-> 0 <Z a) -> (0 <=Z -uZ a <-> a <=Z 0)
3 zltneg0
-uZ a <Z 0 <-> 0 <Z a
4 2, 3 ax_mp
0 <=Z -uZ a <-> a <=Z 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)